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Abstract

Parking is a vital component of today’s transportation system and descriptive data are there-
fore of great importance for urban planning and traffic management. However, data quality
is often low: managed parking places may only be partially inventoried, or parking at the
cutbside and on private ground may be missing. This paper presents a processing chain
in which remote sensing data and statistical methods are combined to provide parking
area estimates. First, parking spaces and other traffic areas are detected from aerial imagery
using a convolutional neural network. Individual image segmentations are fused to increase
completeness. Next, a Gamma hurdle model is estimated using the detected parking areas
and OpenStreetMap and land use data to predict the parking area adjacent to streets. A
systematic relationship is found between the road length and type and the parking area
obtained. It is suggested that these results are informative to those needing information on

1 | INTRODUCTION

Many applications in urban planning and traffic management
require information on the amount of space dedicated to
parking at the individual street level. For instance, transport
modelling relies on patrking supply data to analyse parking
choice behaviour and the impact of policy measures. This is
particularly relevant in the discussion about re-purposing on-
and off-street parking [1]. Parking supply is characterized by a
number of variables, including location and number of parking
spaces, as well as type of parking and ownership. However, data
on parking are scarce or inconsistent. Ref. [2] attributes the lack
of parking data to administrative and bureaucratic as opposed
to technical barriers. To fill this gap, several approaches have
been explored: Ref. [3] uses crowd-sensing from car sensors to
map out parking space. The effort required by this approach
is considerable, since cars have to drive through every street
in the area of interest. Ref. [4] utilizes a LIDAR sensor system
in a public facility to obtain parking space conditions. Ref. [5]
applies classification methods to images captured by fixed cam-
eras in order to estimate the occupancy status. A prediction of
parking lot occupancy is performed by [6] based on data from

parking in structurally similar regions.

smart parking meters. In these approaches, data analysis is lim-
ited to those areas covered by the respective sensor technology.
On the user side, multiple datasets must be combined to chat-
acterize the citywide parking supply, as shown in [7]. They did
not, however, include data on the surrounding area and there-
fore did not account for parking capacity constraints outside
of the city. This issue was intended to be addressed at a later
date by using additional survey data. Ref. [8] obtains informa-
tion on parking supply using data from an origin-destination
survey by taking the maximum number of parked cars at des-
tination as a proxy for parking capacity. A different approach is
taken by [9] for setting up an agent-based parking model: the
total number of on-street parking spaces is estimated assum-
ing that parking can occur along entire road segments using a
fixed distance between parking lots. Spatial characteristics and
restrictions are taken into consideration such as buildings having
private garages or parking in driveways not being allowed.

The contribution of this study to the literature on parking
space inventory is that parking spaces are automatically mapped
and predictions on parking areas can be made for structurally
similar regions. We develop a new approach which combines
features from aerial imagery with road network information and
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steps

Overview of our approach which involves four sequential

land use data. Remote sensing has the advantage that it pro-
vides a large-scale and complete overview of land use in the area
of interest. Moreover, areas inaccessible to ground surveys ate
captured, and creating training data for subsequent automated
image segmentation is less costly than cadastral measurements
on the ground. First, a deep neural network is applied to
aerial images to detect parking areas. The segmentation results
are fused to increase the robustness of detections. Next, the
detected parking areas are combined with information on the
road network from OpenStreetMap (OSM) and land use data.
Variables are extracted from blending the data and then used
to estimate a Gamma hurdle model to predict on-street park-
ing area using Bayesian inference. The uncovered relationships
between street characteristics and land use and detected parking
areas make sense, and predictive accuracy of the model is good.
The workflow is depicted in Figure 1.

2 | IMAGE SEGMENTATION AND
FUSION FOR MAPPING PARKING AREAS

To detect parking, high-resolution remote sensing data are
required. Often, this imagery is captured at periodic intervals
through aircraft overflights on behalf of public authorities, and
partly released for use free of charge (e.g. 10 cm ground resolu-
tion for the state of North Rhine-Westphalia, Germany). This
imagery may be sufficient for an initial mapping of parking
areas. In this analysis, aerial images from six flight campaigns
over Brunswick (Germany), taken by DLR 3K camera sys-
tem [10] in 2019 and 2020, are used. The acquisition scheme
included two flights each in spring, summer, and fall, with
a morning and afternoon flight at each time. This ensured
that seasonal and daily traffic patterns on working days are
accounted for in the data set, as well as different occlusions

by vegetation, varying levels of illumination, and weather con-
ditions. Urban, sub-urban and industrial areas of Brunswick
(about 40 km?) were captured twice during each flight with a
ground resolution of about 9 cm per pixel. Due to the acqui-
sition frequency of 1 Hz and a resulting overlap of successive
images of about 80%, scenes were captured up to 60 times in
total. In combination with Global Navigation Satellite System
(GNSS) and inertial data, a digital elevation model (DEM) and
ground control points, the imagery is precisely georeferenced
through bundle adjustment.

2.1 |
images

Segmentation of traffic areas in aerial

The most successful tools for performing semantic segmen-
tation nowadays are neural networks. Contrary to traditional
methods, where features of interest are extracted using hand-
crafted detectors, neural networks are capable of automatically
learning which are the best suited detectors for the task at hand.
From a remote sensing perspective, current research on station-
ary traffic mainly addresses the detection of marked parking
lots [11-13] and their utilization based on surveillance cam-
eras as well as airborne and satellite imagery [14-16]. For a
most complete parking map, data is needed not only for ded-
icated parking spaces but also on areas that are regularly used to
patk a vehicle (e.g. on-street, in backyards, on factory premises).
Since the mapping of such dual-use areas has not been inves-
tigated before, we created a new dataset composed of 47
non-ovetlapping aerial images, with a size of 5616 X 3744 pix-
els acquired over Brunswick and covering a total area of about
10 km?. For each of the image fine-grained manual annota-
tions for the following four classes were generated: access ways
(total surface of 0.70 km?), roads (0.70 km?), parking areas
(0.42 km?, officially dedicated area or used for parking at the
time of recording), and background. In contrast to the road net-
work with its connecting function, access ways only serve to
link the network to specific destinations, for example, parking
lots. This functional distinction is useful for separating on-street
and off-street parking areas. The annotations are considered as
ground truth because they partition visible areas according to
the defined classes.

In this paper, we use a neural network called Dense-U-Net
[17] for the task of traffic area segmentation. This network is
derived from U-Net [18], a widely successful fully-convolutional
architecture especially used in remote sensing. It consists of
two consecutive parts: an encoder and a decoder. The aim
of the encoder is to extract all the relevant features from the
input data. The decoder on the other hand, takes the fea-
tures as input and interprets them as object classes pixel-wise.
In order to extract more spatial and semantic information
from the low-level and high-level layers respectively, several
layers of the encoder are directly connected to the decoder
through so-called skip-connections. The main advantage of
Dense-U-Net over similar U-Net architecture is its commonly
used densely-connected backbone architecture for which pre-
trained weights are easily available, and its replacement of the
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typical shallow decoder architecture with densely-connected lay-
ers mirroring those of the encoder. It was shown in [17] that
it leads to more accurate segmentation results than competing
architectures when fine-grained details recovery is important.
To extract as much information as possible from the image,
we additionally exploit a free available data source, namely OSM
and integrate these data in our approach. Although OSM data
are sometimes spatially and semantically inaccurate, they pro-
vide a good baseline for distinguishing roads, access ways and
parking areas. Therefore we take inspiration from the fusion
strategy of FuseNet [19] and implement it within our Dense-U-
Net architecture: the main (here RGB) and auxiliary (here OSM)
input images from the two data sources are fed into two separate
encoders of the same architecture but not sharing weights, and
the feature maps of the auxiliary encoder are merged by addi-
tion to the corresponding feature maps of the main encodet,
and used by the next layer of the main encoder. As shown in
our previous study, the slightly different merging scheme Skip-
FuseNet [20] is more effective for RGB and OSM fusion: the
added feature maps from the main and auxiliary encoders are
not fed into the next main encoder layer, rather they are used
as inputs for the skip-connections to the decoder. This sepa-
ration reduces the risk of the network being confused during
training, as the features extracted in both branches are likely
to be considerably different. To prepare the OSM data to be
used as input to the neural network, we extract pixel-wise masks
for seven traffic-related objects categories (drivable and non-
drivable ways, access ways, parking spaces, gas stations, bicycle
parking and parking vending machines). An overview of the
network and of the input and output data is shown in Figure 2.
An essential step when dealing with neural networks is the
training phase. In this phase, the network is trained to solve
the desired task by running the network over the input images
and comparing its outputs (the so-called predictions) with the
ground truth using a loss function. Afterwards, the computed
loss is “back-propagated” through the network to optimize
it so that the next iteration makes more accurate predictions.
The data set is split into three subsets: (1) the training set
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Tllustration of the training pipeline for the aerial and OSM fusion network

consisting of 35 images, which is only used during the training
of the network, (2) the validation set consisting of five images,
which is used to evaluate the network’s performance during the
training and (3) the test set consisting of 7 seven images, which is
used to evaluate the performance and generalization capacities
of the network after the training. This final step ensutes that the
network generalizes well to images unseen by both the network
and the operator monitoring the training, to avoid overfitting
the network on training or validation data.

For the training of the network, we crop our training images
to smaller patches with a size of 512 X 512 pixels and perform
the training process over these input images over 100 iterations
using a cross-entropy loss, an Adam optimizer and a learning
rate initialized at 107 decaying at a rate of 0.937 after each
epoch. The weights of the RGB encoder are initialized with
weights pre-trained on ImageNet, and the RGB input data is
normalized according to the recommendations of the PyTorch
library. The other layers’ weights are initialized randomly with a
Xavier uniform distribution and their biases are initialized to 0.
Afterwards, we perform the final evaluation on the test set. The
predictions output by the network are segmentation maps, that
is, images where each single pixel is classified. This classification
results from a maximum-voting among all four classes, where
the class with the highest predicted probability is assigned to
each pixel. Upon visual inspection, we establish that the net-
work accurately delineates parking areas, roads and access ways
(see Figure 4 for examples). The areas predicted for all classes
smoothly and precisely follow the visible object boundaties in
the input images, false detections are rare and the extraction
complete in most regions. The most common type of confu-
sion appeats to be between roads and access ways, and therefore
a minor concern since our main objects of interest are parking
lots. To provide a comparable baseline, we provide a quantita-
tive performance evaluation in Table 1. Three usual metrics are
listed there: (1) the Intersection over Union (IoU), which mea-
sures the accuracy of our network by quantifying the percentage
of overlapping pixels between the ground truth and our pre-
dictions, (2) precision, which is highest if the network extracted
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TABLE 1

segmentation of parking areas, roads, and access ways for the city of

Quantitative performance of the neural network for the

Brunswick, Germany

IoU (%) Recall (%) Precision (%)
Parking 68.16 78.22 84.12
Road 77.44 84.68 90.05
Access way 64.40 75.69 81.19

only correct objects (i.e. no false positive), and (3) recall, which
is highest if the network missed no object (i.e. no false nega-
tive). The high precision scores for all three classes (*84% for
the parking areas) prove that our network is conservative and
therefore is not likely to wrongly detect objects. We can see,
however, that despite high recall scores, the completeness of our
predictions could be further improved, especially for the park-
ing class (~78%). This is mostly visible under tree shadows and
on factory premises. For more details about the training setup,
the analysis and discussion of the results as well as a comparison
of training configurations (e.g. with and without OSM masks
and with and without the fusion scheme), we refer to our paper
[20].

2.2 | Fusion of traffic area predictions

We expect an improved completeness of segmented traffic
areas when the predictions on overlapping aerial images are
combined: changing acquisition conditions (e.g illumination,
occlusion, viewing angle, weather) result in altered network pre-
dictions and lead to more reliable classifications through mutual
comparison. Ref. [21] proposes using another neural network
for this task, which utilizes a baseline prediction as a prior mask
and generates a refined prediction for the same area with a
slightly different configuration. To enhance classification accu-
racy, ref. [22] combines the results of three neural networks with
a naive Bayesian fusion layer.

To detect traffic and especially parking areas on a citywide
basis, two main challenges arise for the fusion of predictions:
first, the requirement to detect areas that are regularly used for
on-street parking implies that these areas might also be tem-
porarily available for moving traffic. To classify an area in this
regard, intertemporal comparisons are necessary and the correct
assignment to a class may change based on the observed traffic
situation during a flyover. The main purpose of a traffic area is
approximated by using the segmentation results as a proxy for
non-observed periods. Second, the regression model estimation
conducted below requires a parking area inventory that offers
a high level of heterogeneity in terms of spatial and infrastruc-
tural characteristics in order to facilitate transferability to other
regions in the future. For the study area of Brunswick, these
requirements translate into several thousand aerial images that
must be fused with a high degree of interdependency due to the
overlaps and informative content inherent in each prediction.

Classical remote sensing methods for mosaicking, such
as a classification by sum of probabilities and/or passing
thresholds, do not adequately account for known pixel-wise

power compared to other image-wise predictions of the same
scene. Therefore, we propose a novel approach that estimates
per-pixel confidence intervals of the class probabilities via
the statistical method of bootstrapping and selects the result-
ing class with a classifier. For this, the probability predictions
per class for all aerial images atre retrieved by the previously
described aerial and OSM fusion network. By projecting the
individual predictions on the DEM, a pixel-wise stack of proba-
bilities for the same scene can be obtained. An empirical/basic
bootstrapping as described in [23] is used to produce a confi-
dence interval for the class probability’s true value. The classifier
then returns the class with the highest upper limit of the corre-
sponding confidence interval. Figure 3 visualizes the approach,
simplified with six instead of about 60 prediction layers used for
generating the bootstrapped segmentation map of traffic areas
in Brunswick. The method serves as a framework within which
the construction of the bootstrapping procedure and the clas-
sifier can be chosen. Subsequent work could examine whether
the assumption of independently and identically distributed pre-
dicted class probabilities is warranted, and the bootstrapping
technique could be adjusted accordingly, depending on the data
used.

Comparing the single with the fused predictions for two
exemplary aerial images of the test set in Figure 4 shows an
overall tendency for a better matching between the fused pre-
dictions and the ground truth. It should be noted that the
ground truth was created on the corresponding aerial image of
the individual prediction depicted, so the heterogeneous com-
bination of all acquisition conditions in the fused prediction
is only partially reflected by it. This insufficient representation
is most evident in Panel 4(I), where in the majority of aerial
images the parking area is obscured and therefore does not
appear in the fused prediction. The strength of the approach
is apparent in Panel 4(III): here, the single prediction exhibits
high uncertainty (indicated by the granular segmentation), while
the fusion process correctly classifies the pedestrian walkway as
background. An incorrect classification as parking area due to a
vehicle in a loading zone (Panel 4(IV)) is also corrected in the
fused prediction. If — as seen in Panel 4(VI) — a residential
road is frequently used for on-street parking, the fusion process
reveals this. By combining the numerous observations, objects
that show great similarity to a parking lot on aerial imagery can
be ruled out by fusing the predictions (see temporarily placed
containers in Panel 4(VII)). It can also be seen in this image
cutout that bootstrapping causes only regularly used areas to be
classified as parking spaces. Since all flights took place during
the vegetation period, the street in Panel 4(VIII) can be better
but not completely identified by fusion.

3 | ADDITION OF FURTHER
VARIABLES

From the aerial image segmentation and fusion process all vis-
ible parking areas are vectorized. However, for our approach
only on-street parking spaces are taken into consideration. So,
surface parking areas are left out for further analysis and only
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parking spaces alongside roads, either on the roadside or on
parking lanes (see Figure 5), are taken into consideration. To
create a model that makes possible to estimate the parking area
of regions that have a comparable infrastructure, we need addi-
tional information. This information can be spatially joined to
the detected parking areas using additional data sources. Vari-
ables required for our model are detected parking area (in square
metres), road length (in metres) and road type, extracted from
OSM, and land use, sourced from the German digital landscape
model by [24].

3.1 | Addition of street data

The OSM road network is mainly represented by line features
and identified by the key highway and a value designating differ-
ent types of roads, ways and paths, such as service, residential or
primary. Roads that belong together are sometimes divided into
segments in OSM. In order to have more realistic road lengths,
adjacent segments of the same type are linked together. Only
drivable roads (according to the OSM definition) ate consid-
ered for analysis, thus leaving out some OSM path types such
as footways or steps. Road line features are buffered and con-
verted to polygons. This makes possible to map parking areas
onto the buffered roads (Figure 5). Subsequently parking areas
are aggregated by road, for which total length and length within
the study area are calculated.

3.2 | Addition of land use data

Further, land uses are represented by polygon features and
cover the study area continuously. Examples of land uses ate
industrial, residential or forests. To combine road and land
use data firstly road width by road type is estimated visually
and used as buffer distances. The buffered roads are subse-
quently intersected with land use data and percentages of land

0 ] 100 Road
(Residual: background)

Ilustration of the scheme for fusing individual predictions on overlapping aerial images into a single segmentation map

uses are calculated for each road. This results in each road
having a percentage for each of the land uses. Road width esti-
mates are not strictly necessary, being possible to use an average
width for all road types. However, in case of fine-grained land
use data, accuracy may be increased. The land uses are con-
densed to two categories. On the one hand, land uses where
parking is more common and on the other hand, land uses
for which the occurrence of parking areas is expected to be
less likely (what we later call land use with less parking) such
as wooded areas, wild vegetation areas, water surfaces, railway
related areas, bridges or agricultural areas. Since the first cat-
egory shows little variation, for the model only the sum of the
percentages of the land uses within the second group is used as a
predictor.

4 | SPECIFICATION, ESTIMATION AND
EVALUATION OF THE MODEL THAT
PREDICTS PARKING AREA PER STREET
METRE

We use Bayesian inference to estimate our model which requires
the specification of the full probability model for the data,
via the likelihood function, and parameters, via prior distribu-
tions [25]. The advantage of this approach is that uncertainty
is explicitly accounted for. This is important in the case of
hierarchical models, where parameter uncertainty needs to be
transmitted between hierarchies and it is useful when results are
fed into further applications such as agent-based travel demand
models.

4.1 | Formulation of the used model

The dependent variable y in our model is the detected park-
ing area (in square metres) per metre of road length. There
are IN = 3443 roads, as defined in Section 3.1, with mean road
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length of 130 m, and median, mean and maximum parking area
per metre of 0.2 m?/m, 1.3 m?/m and 19.5 m?/m, respectively.
The distribution of detected parking area per metre is highly
skewed and non-normal with a large proportion of zeros (38%).
A hurdle specification is chosen to model the data generating
processes of the zero observations and the positive observations
separately. Various specifications involving different types of
probability distributions for the positive observations (log Not-
mal, Gamma) and vatiables were compared using leave-one-out
cross-validation [20]. While the log Normal and Gamma distri-
bution are both continuous probability distributions restricted
to the positive domain, the Gamma distribution has slightly
fatter right tails, which means it is better suited to modelling
extreme values. The most preferred model based on model fit
criteria is a hierarchical Gamma hurdle regression. For details
on this type of model in general the reader is referred to Sec-
tion 5.6 in [27]. The probability of whether a road has zero
detected parking area is modelled via a Bernoulli distribution.
This is a discrete probability distribution for random variables
that can take only one of two possible outcomes. Thus, the
hurdle equation is specified as follows

7T, = ag + Box; @M

where 7; = Prob (5, = 0), and oty and B are parameters to be
estimated, and predictors x; are log road length in metres and
the percentage of land use where parking is less likely. The dis-
tribution of the positive continuous values of the dependent
variable y; is specified as a Gamma such that

M=y +ag + i+ e~T @) @

=3 Drivable road

[ ] Drivable road, buffered

Cutout of an aerial image with the OSM road network and detected parking areas

where o is the intercept; y; detects systematic departures
from &y due differences in detected parking area per street
metre in road types, where s[7] denotes the road type s =
1, ..., S of observation 7 where § = 9 as explained in Section
3.3. The parameter vector §; measures differences in the pos-
itive continuous detected parking area per street metre due to
variation in the predictors, which are the same as in the hur-
dle equation. The random error g; captures unobserved factors
influencing detected parking area and follows a Gamma distri-
bution with shape parameter 4. Combining (1) and (2) gives the
following hurdle likelihood function

1

- ify, =0
T+ oxp (7)) i
P 0il6) = 1 Lo ©)
L Y0ilmA) ify, >0
T+ exp (—7,)  1=rCDROIA)

where 6; is the set of all parameters to be estimated. To obtain
the joint posterior distribution, which is our object of infer-
ence, we combine the likelihood in (3) with the following prior
distributions for each parameter

%05 %105 Bos B1 ~ N (0, 5)
@ ~NO0,7) V=1,
T, ~ 1 (3, 0, 2.5)
A ~ T (0.01, 0.01)

)

where the standard deviation 7, denotes the road type level
errors. Estimation of the joint posterior is performed in the
probabilistic programming language Stan using Matkov Chain
Monte Catlo sampling via adaptive Hamiltonian Monte Carlo
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TABLE 2  Estimates of the postetior means of the model parameters with 95% credible intervals (CI) and Rhat values
Estimate 1-95% CI u—95% CI Rhat Bulk ESS Tail ESS
Gamma component
shape 4 0.73 0.69 0.76 1.00 10,988 7716
intercept oty 1.46 0.84 2.02 1.00 3847 4645
sd(intercept) Ty 0.48 0.19 1.10 1.00 2769 4888
In(metres) 3 —0.26 —0.32 —0.20 1.00 10,415 7305
% land use with less parking 5; —0.00 —0.01 0.00 1.00 16,931 7091
Hurdle component
intercept Qg 3.51 3.15 3.87 1.00 11,285 7503
In(mettes) 3, —0.98 —1.06 —0.89 1.00 10,231 7314
% land use with less patking 3, 0.03 0.02 0.04 1.00 12,689 7258

[28], which is an approximate Hamiltonian dynamics simula-
tion based on numerical integration that is then corrected by
performing a Metropolis acceptance step. Implementation of
our model is done using the R package for Bayesian regres-
sion modelling “brms” version 2.15 [29], which is based on
Stan. Samples from the marginal posterior distributions of the
parameters are drawn using the Hamiltonian Monte Carlo No
U-turn sampler [30] with four independent Markov chains with
5000 warm-up iterations and 5000 sampling iterations. Conver-
gence of the chains is monitored visually via traceplots and in
terms of the split potential scale reduction factor (Rhat) which
compares between-chain parameter estimates and takes a value
of 1 at convergence.

4.2 | Parameter estimates

Estimates of the means of the posterior distributions and their
95% credible intervals are presented in Table 2. The potential
scale reduction factor Rhat, which measures the ratio of the
average variance of samples within each of the four chains to
the variance of the pooled samples across chains, is 1. This
suggests that all chains are comparable to each other and have
converged to the same level. Also, bulk and tail effective sample
sizes (ESS) are large, indicating that estimates are reliable as they
are based on a large number of independent samples from the
posterior distribution. The Gamma distribution is described by
its shape parameter of 0.73 and the scale parameter intercept,
which decreases as the natural log of metres of street length,
In(metres), increases. This means that as expected the distri-
bution is highly skewed and that as a street gets longer, the
amount of detected parking area per street metre decreases. The
parameter sd(intercept) is the estimated standard deviation of
the varying intercept. It suggests that some of the variation in
detected parking area per street metre is associated with differ-
ences in road types. Accordingly, the posterior distributions of
these effects in Figure 6 show that service and residential roads
tend to be associated with large values of detected parking areas
per street metre, whereas primary and secondary roads show
a slight, albeit uncertain, negative association. The parameters
in the hurdle components in Table 2 are the log odds. They

indicate that on average longer streets have a lower probabil-
ity of having no parking areas as a 1% increase in street length
is associated with almost equally sized decrease in the probabil-
ity of observing zero detected parking area. Also, as % land use
with less parking increases for a given street, the average prob-
ability of observing zero detected parking area increases, albeit
by a very small amount. The conditional effects of the predic-
tor’s parameters are depicted in Table 2 and shown in Figures 7
and 8. Figure 7 suggests the probability of zero detected park-
ing areas per street metre decreases as road length increases
and increases as the value of % land use with less parking
increases. Figure 8 shows the positive effect of increases in road
length on predicted detected parking area, which is strongest
at moderate road lengths. It also shows that as the percentage
of land use less likely to be associated with parking increases,
its effect on detected patking per street metre decreases. This
means that as a road is increasingly surrounded by land uses
such as wooded areas that are usually not associated with park-
ing, the model predicts less detected parking area, which makes
sense.

4.3 | Evaluation of predictive performance

The out-of-sample predictive accuracy of our model is evaluated
using Pareto smoothed importance sampling cross-validation
[26], an approach that involves fitting a Pareto distribution to
the tails of the 20% largest importance ratios. If the resultant
estimate of the shape parameter of the Pareto distribution, £, is
larger than 0.7 this would be reason for concern (see ref. [26]) as
it indicates a data point that is highly influential to the posterior
distribution and therefore has the potential to negatively affect
future predictions. Figure 9 shows that estimates of £ for all data
points ate less than or close to 0.5, indicating that our model’s
out-of-sample prediction accuracy is high.

As part of our model checking process we sample 20 val-
ues from the postetior distribution and plot the respective
predictions, Jy.,, against the data, y, in Figure 10. The upper
panel suggests that overall the predicted posterior density
follows the shape of the data. The lower panel shows more
detail for the interval [0, 5] on the x-axis. It demonstrates
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that at low magnitudes of detected parking areas per metre,
uncertainty is much increased. That is, predictions at low levels
of parking areas are associated with higher levels of uncertainty.

Investigating further, we compute the average predictive
error y — Jyp, » based on 100 draws from the posterior distri-
bution. Overall the bulk of the average predictive errors of each
observation is close to zero, with a mean of 0.03 and a2 median of
—0.7. The latter is negative because for some observations the

This paper presents a novel approach to predicting parking
areas at the individual street level using aerial imagery, OSM
road network information, land use data and Bayesian regres-
sion modelling. One advantage of aerial imagery is capturing a
large study area in a short time, which gives a consistent dataset
for the time of the flight. Compared to existing approaches, the
proposed processing chain not only provides data on dedicated
parking areas on publicly accessible ground. Those on private
property are also mapped. Additionally, the fusion step identi-
fies those places that are regulatly occupied by parked vehicles
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against the smoothed data y. The upper panel depicts the entire distribution.
The lower panel zooms into the peak of the distribution to better show the

Posterior distributions of the predicted parking area y,,

increase in uncertainty for values close to zero

but not marked as parking lots. Taken together, this increases
the completeness of the inventory. Furthermore, georeferenc-
ing of aerial images is much more precise than using imagery
from moving cars. This makes it easier to link the features
extracted from remotely sensed imagery to other sources like
OSM. Since the features used in the Gamma hurdle model to
describe the road network and land use are available for many
geographic regions, predictions on parking area at the street
level can be made for those areas lacking aerial imagery but that
are structurally comparable.

Our approach of segmenting traffic areas in aerial images is
already critically discussed [20, 31]. In the context of this study, it
is important to consider that the data comprise detected parking
areas, which are generally expected to be smaller than the actual
areas. One reason is occlusion and shadowing caused by build-
ings and vegetation; another is that the ground truth data, which
are used to train the neural network for the segmentation of traf-
fic areas in individual aerial images, classifies a pixel as a parking
area only, if it can be unambiguously recognized as such. Since
smaller predicted parking areas often reflect on-street parking
and designated parking areas are typically clearly visible from
acrial imagery, we expect under-detection to decrease as parking
area size increases. This hypothesis is supported by the fusion
scheme: an area that is not exclusively dedicated to parking traf-
fic is only classified as parking area if it has a vehicle on it. If
in the majority of the observations there are no vehicles parked
on such a multi-use area, the area may be classified as road or
access way by the fusion scheme.

204 @
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>
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y- Yrep
FIGURE 11  Average predictive error of the Gamma hurdle model

The process of variable extraction also presents various
aspects that need to be considered. First, accuracy and com-
pleteness of both data sources, but especially of OSM, as it is
a volunteered geographic information project, are limited. An
assessment of data quality is difficult as no official database is
available for comparison. Still, investigations show that the qual-
ity of OSM data is high in regions with a high population density
and with numerous OSM conttibutors [32, 33], which is the case
for our study area. Second, measurement errors for road length
may arise, if roads consist of several lines. After using the GIS
linking function, around 60% of line segments were merged,
but the process fails, if the endpoints of lines do not coincide.
Shorter roads may therefore be slightly over-represented in our
data. Third, when buffering roads to combine them with land
use data, comparing line features with aerial images to estimate
road widths shows that not all lines are located in the middle of
a road leading to buffered roads being misplaced. There ate also
roads that have varying widths, for example, due to different
number of lanes in different sections or irregular roadside park-
ing. In this case, the overlapping areas of the buffered roads with
the land use polygons may be displaced. Moreover, the width of
residential roads varied a lot within the study area, so that an
average value is chosen. The implication for our data is, that
there is some uncertainty about the correct assignment of land
use, which is one of the variables in the model.

In the following we focus on the discussion of the predictive
model for detected parking areas. First and foremost, the param-
eters of Bayesian hurdle Gamma regression model make sense
and support the initial hypothesis: longer streets are associated
with higher predicted parking areas and with a lower likelihood
of observing zero values; and higher percentages of land use
like wooded areas, agriculture and water surfaces are associated
with smaller parking areas and a higher probability of observing
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zero values. The parameters associated with variation in patk-
ing area due to different street types also make sense. Service
and residential roads are associated with larger detected parking
area per metre of road length. This results also reflects the fact
that these two road types make up 64% and 22% of the data,
respectively. Instead, parameters of street types with few obser-
vations and/or little association are shrank towards zero by the
hierarchical model [34].

Looking at the predictive accuracy of the detected parking
area model in Figures 10 and 11, we find that accuracy varies
with the size of the detected parking area per metre. At mid to
large ranges, performance is quite satisfactory, but at zero or
small values prediction uncertainty increases. Thus, predictions
for short roads and/or a high percentage of land use not for
parking are associated with more uncertainty as zero or small
detected parking areas are expected. Many observations fall into
this lower range on the one hand because this is the nature of
parking areas in Brunswick, on the other hand for reasons dis-
cussed above. The binary modelling of the zero observations
with two predictors, the inclusion of which is based on model
fit criteria, is relatively imprecise. A possible explanation is that
street length and percentage land use not for parking contain
little information on the probability of observing zero detected
parking area per metre. Additional data on street signs and infor-
mation of parking restrictions may provide useful information
in this context, but are currently not available or in a digital pro-
cessible format. To a lesser extent, this explanation also applies
to the modelling of the continuous data in the Gamma model
component, but this component uses additional information
on road type, which helps explain variation in detected park-
ing area per metre. These results suggest that it is particularly
important to consider the underlying parameter uncertainty that
is provided by the Bayesian model when making predictions.
Information on the entite posterior distributions of the param-
eters is available, which means prediction uncertainty can be
quantified and more importantly included in further modelling
in a transparent manner, for example, when results are used in
the context of an agent-based travel demand model, where these
distributions help to calibrate the available parking ateas. Finally,
our model predicts detected parking area, but a conversion into
the number of parking spaces is in principle possible by divid-
ing total parking area by an average value of the area of a single
parking space.

6 | CONCLUSION AND FUTURE WORK

This study is a proof of concept showing how open geodata in
combination with remotely sensed data and Bayesian inference
can be used to estimate a street level parking area prediction
model for on-street parking. The model can be applied using
information on road length, road type and land use as obtain-
able, for example, from OSM. The use cases are numerous:
from creating parking constraints in travel demand models, to
inventories for public administrations, to generating a data base
for intelligent transport system (ITS) technologies that sup-

port parking. Even though the choice of available variables
that can be used for prediction is highly limited, we show that
it is in principle possible to predict parking area. Uncertainty
in the prediction increases as the size of the detected park-
ing areas per metre of street decreases. We therefore conclude
that explicit consideration of the undetlying parameter uncet-
tainty when making predictions is imperative, something which
is easily made possible by using a Bayesian inference in the
estimation of the model as information on the entire poste-
rior distribution of parameters is available. Going forward, we
identify a need to investigate and quantify the contribution of
the different sources of measurement errors as a result of data
collection and variable creation in the predictive modelling pro-
cess. It is also desirable to include more data describing the
spatial and network structure in the estimation, for example
from other cities, as it may help increase validity of the estimates
in a broader context. Aside from model estimation, additional
remote sensing data from these cities can be used to assess to
which extent our approach is transferable to other regions. To
ensure a good detection performance of parking areas in spite
of specific natural and urban structures, it is recommended to
perform a fine-tuning on a few samples of the new data. The
field of application can be expanded by adapting the processing
chain for high-resolution satellite images. As a result, we antic-
ipate improved generalization capability even when the model
is applied to structurally similar regions with no aerial imagery
available.
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